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and output impedances. The a and b coefficients are chosen to
achieve the maximum gain-bandwidth which sets ¢ =0.75 and
b=1032.

At this point, the choice of device g, must be made. It must
be chosen with some care as it determines the number of devices
N, which also affects the parasitic resistances R, and R,,. Using
(3), we choose to set N =28 and solve for g,, =38 mmhos. From
Fig. 2, at (a, b) = (0.75,0.32), X = 0.74. Since we require f_, 5 =
20 GHz, this sets f.=27 GHz. Based upon these values, the
remaining values are

C, =023 pF
R,=47Q
C,, = 0.235 pF
R, =312 Q.

The transistor is now completely specified. The fact that C,; and
C,, arc cqual results becausc the input and output line imped-
ances have been-set equal to one another.

III. CONCLUSION

We have shown that the maximum normalized gain-bandwidth
curve in [1] is a small portion of the more general gain-bandwidth
contours. There is 2 maximum which corresponds to the optimum
design of a distributed amplifier. Constraint-free design equa-
tions for transistors specifically intended for use in distributed
amplifiers were also presented.
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Dispersion of Picosecend Pulses in Coplanar
Transmission Lines

G. HASNAIN, A. DIENES, axp J.R. WHINNERY

Abstract —The dispersion of coplanar-type transmission lines has been
extended to the terahertz regime to examine the distortion of picosecond
electrical pulses. Dispersion of coplanar waveguides is compared to equiv-
alent microstrip lines. Agreement with available experimental data is
demonstrated for coplanar strips. An approximate dispersion formula for
coplanar waveguides is also reported for CAD applications.

I. INTRODUCTION

Picosecond electrical pulses generated by opto-electronic
switches [1] have several hundred gigahertz bandwidth and are
therefore much dispersed within a few millimeters of travel, even
on high-frequency transmission lines such as microstrips and
coplanar waveguides. Dispersion characteristics have been in-
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Fig. 1. Two examples of a coplanar-type transmission lines. (a) Coplanar

strips (CPS). (b) Coplanar waveguide (CPW),

vestigated thoroughly for the popular microstrip line [2], but
published data for coplanar lines are usually limited to about 50
GHz. In previous papers [3], [4], we examined the dispersion of
picosecond pulses in microstrip lines. In this paper, we extend the
dispersion relation of coplanar-type transmission lines into the
terahertz regime and use the result to compute distortion of
picosecond pulses propagating in such lines.

II. THEORY

The spectral domain analysis method used here was first pro-
posed for slot lines by Itoh and Mittra [5] and later extended by
Knorr and Kuchler [6] to coupled slots and coplanar strips. For
the purpose of clarity, the main steps of the analysis are briefly
reiterated. Typical coplanar transmission lines consist of two or

‘more metal strips separated by slots on a dielectric substrate (Fig.

1). The problem is to find the solution to the wave equation in an
inhomogeneous medium with inhomogeneous boundary condi-
tions. Since the metal discontinuities lead to difficulties in de-
fining the boundary. conditions in the transverse direction, the
scalar potentials ¢*”(x, y) are transformed into the Fourier
domain. Thus, the Helmholtz wave equation is converted to an
ordinary differential equation whose solutions are given by:

. ‘Pl(a, y) = A(a) e nly—d)
¢, (a,y) = B(a)sinh(y,y) + C(a) cosh(y,»)

93(a,y) =D(a)e™”

ey
)
(3)

where y? = a® + B2 — wpgeoe;, i =1,2,3 define the regions, a is
the transform variable corresponding to the x-variation, and B is
the propagation constant in the longitudinal direction. Using the
continuity conditions at y =0

E22=Ez3; Ex2=Ex3; H2=H3; H2= x3

z z X

(4)
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and the interface conditions at y =d
Ez2=Ezl=Ez(a); Ex2=Ex1=Ex(a)
IJZZ—-HA:Jx(a); Hxl—}le:Jz(a)

we eliminate the eight constants to obtain a set of coupled
equations

Gll(a’B)Ex(a)_"Gll(a’B)Ez(a)=Jx(a) (6)

Gun(a,B) E (@) + Gy (e, B) E,(a) = J.(0) (N
where G, (a, B) are the elements of the dyadic Green function in
the Fourier transform domain.

Expanding the electric-field components in an infinite series
using a complete set of basis functions

%)

Ex(a)=§:lannn(a) and E,<a)=5§1bn§,,(a) ®)

and applying Galerkin’s method [7], we have

L rar(Bat £ 0u(Bb=0 (9

L Run(B)e,+ £ ,(Bb=0 (10

for m=1,2,3+-- o0, where
Ban(B) = [ Gu(a,Byms(@)m, (o) dec (1)
2n(B) = [~ Gu(aByms(@)s () da (12)

Bon(B)= [~ Ga(B)5i()my () da (13)
Sun(B)= [ Gn(aB)x(e) () da.  (19)

For nontrivial solutions of the electric fields, the determinant
of the coefficient matrix of (9) and (10) must vanish. The values
of B, obtained from the determinantal equation for a given
frequency, define the desired dispersion relation.

The theory developed is exact but a practical solution cannot
be obtained from an infinite determinant. In practice, a priori
knowledge of the actual field distribution is used to approximate
the field expansion by only a few terms. However, the actual
numerical evaluation of the determinant becomes very com-
plicated beyond a certain frequency due to the appearance of
transversely propagating modes that are manifested in the spec-
tral domain as poles of the Green function (Fig. 2(a)). For-
tunately, the poles are simple and their effect on the accuracy of
the integration can be greatly reduced by integrating over subin-
tervals chosen symmetrically about the poles. The poles must first
be determined by numerically solving for the roots of the Green
function denominator. This becomes more difficult with increas-
ing frequency as the number of roots grows and their separation
rapidly decreases (Fig. 2(b)). In a realistic guide, the transverse
direction is usually bounded by conducting walls. This causes
standing waves and consequently the scalar potentials are then
expanded in a Fourier series. The poles of the Green function do
not, in general, coincide with the spectral harmonics, but the
sharp resonances still make the summations difficult to evaluate.
Also, while substrate and conductor losses limit the amplitude of
the resonances somewhat, this does not alleviate the difficulties in
the evaluation of the integrals. Nevertheless, by careful choice of
numerical algorithms, it has been possible to extract solutions up
to several terahertz frequencies for typical configurations. A good

739

T ! 1 1

B Coplanar strips

- d7A=012 Brkg=S|
-~ w/d=s/d=0.4
s €=43

|

1

L
ligy j0 s018URUOURD

NSO abhon

[N -]
[~]
\l

s

!

’

[

/

/

/
’
!
’
]
t
'
AY
\
N

o
[ S |

Gq(a,8)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ad el
(2)
o0 T T T T T T T T
L) 8o Coplanar strips 1
s o d/A=10  PBrrg=60 ]
6o~ w/d=s/d=0.l T
& 5o €243 1
40| e
30 -1
20 b
10 1
[
-10 1
0 8 2 16
ad e
(b)
Fig. 2. (a) Green function component Gy;(a, 8) and its denominator (dashed

curve) versus ad for d /X =0.12 (72 GHz for d =500 pm) and 8/k,=5.1.
Configuration: Coplanar strips with w/d =0.1, s/d = 0.1, and ¢, = 43. (b)
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choice for the basis functions in the spectral domain are the
Bessel functions. With these functions, fairly accurate solutions
can be obtained from a 2X2 matrix—that is, using a one term
expansion. However, we have used up to four terms which
required the evaluation of 64 integrals (each of which may have
as many as 10 poles) for a given value of frequency. The numeri-
cal calculations involve considerable computing time even for the
one term expansion.

Finally, pulse distortion due to dispersion is computed from [4]

V(f,z) =V(f,0)e Dz (15)

where

B=2n- Veff(f) (16)

and V(f,z) is the Fourier transform of the pulse v(z,z) at a
distance z.

III. RESULTS

Owing to the significant computing effort needed to obtain the
value of B at any given frequency, it was found expedient to use
the empirical formula (also used for microstrip dispersion [8])

(Ve )

V eff(f \/7+ (1+ F_b) (17)

curve fitted to the dlspcrsmn data. F=f/fg is the normalized
frequency, frg=4/¢,—1/d is the cut-off frequency for the
lowest order TE mode, €, is the effective permittivity at the
quasi-static limit [2], and a, b are constants which depend on the
configuration and dimensions. This empirical formula appears to
fit quite well the dispersion relations for both coplanar waveguide

(CPW) and coplanar strip (CPS).
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The constants a and b in the empirical formula for dispersion
was also computed for coplanar waveguides of varying dimen-
sions. We observed that b =1.8 independent of the dimensions,
while ¢ is computed from

log(a) ~ulog(s/w)+v (18)
where u and v depend on the substrate thickness d as follows:
u=0.54-064qg+0.0154> (19)
v =0.43—0.86g +0.5404* (20)

where g =log(s/d).

We have thus obtained an approximate formula for desk
calculation of dispersion, which should prove useful in the com-
puter-aided-design (CAD) of microwave-integrated circuits in-
volving coplanar waveguides. The formula has been verified to be
accurate to within 5 percent for the following range of parameters

Ol<s/w<$§; 01<s/d<5;
15<e,<50; O0<f/frg<10.
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Fig. 6. (a) Experimentally measured pulse shape at 0.9 mm with falling edge

extrapolated (dashed line) for computational purpose (Courtesy: K. Meyer,
University of Rochester, NY; see [9] for experimental setup). (b) Theoreti-
cally computed pulse shape at 4 mm using dispersion relation shown in Fig.
3. (¢) Experimentally measured pulse shape at 4 mm (Courtesy: K. Meyer,
University of Rochester, NY).

OQutside the above range the formula may still be valid, but its
validity has not been tested due to computational limitations.
Gallium arsenide is one of the semiconductors often used for
optoelectronic switches. We therefore analyzed the dispersion of
the typical 50-ohm coplanar waveguide (50-p slot, 85-p strip) on
a 100-p thick GaAs substrate having €, =13. The dispersion
relation is shown in Fig 3 in comparison with that of a 50-Q
microstrip (73-p strip) on the same substrate [3]. We observe that
the quasi-state value of the effective permittivity ¢, is lower for
the coplanar line compared to the microstrip. This is to be
expected since the coplanar line has greater fringe fields. At
infinite frequencies the effective permittivity €. approaches €, in



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 6, JUNE 1986

© Theory
& Experiment ]

RISE TIME (ps)
O = N O & 0 o0 -
T

T ST S|
1 2 3 4

PROPAGATION DISTANCE (mm)

Fig. 7. Rise time of distorted pulse as a function of propagation distance.
Theoretical values are compared against those experimentally measured
(Courtesy: K. Meyer, University of Rochester, NY).
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both cases. This implies that ultrashort pulses (having band-
widths greater than 700 GHz for this case) will suffer greater
dispersion in the coplanar line. On the other hand, since the
increase of €. with frequency begins more gradually for coplanar
lines, longer pulses with narrow bandwidth experience less varia-
tion of €., and hence less distortion. This difference of behavior
is illustrated in Fig. 4. The dispersion of both coplanar and
microstrip lines can be reduced by reducing the substrate thick-
ness. For coplanar lines, dispersion can also be slightly reduced
by decreasing the strip and slot dimensions, but the €., at low
frequency remains lower then the corresponding microstrip and
thus it is intrinsically more dispersive for short pulses.

The only experimental measurement of dispersion in coplanar
transmission lines, to our knowledge, has been made at the
University of Rochester [9}, [10] on lithjum tantalate substrates
using an electrooptic sampling technique. Consequently, calcula-
tions were made for their experimental configuration which
utilizes two coplanar strips each 50 p wide and separated by 50 p
on a 500-p thick LiTaO; substrate having ¢, = 43. The numeri-
cally derived dispersion curve is shown in Fig, 5. For this case,
the constants in curve-fitting (17) are ¢,
1.69, and frp = 23.15 GHz. Using their experimentally measured
pulse shape at 0.9 mm (Fig. 6(a)) with the falling edge extrapo-
lated (the data supplied was truncated), the pulse shape at 4 mm
was computed (Fig 6(b)) from the dispersion relation. The agree-
ment with the experimental result (Fig. 6(c)) is found to be
reasonable. The frequency dependence of the characteristic im-
pedence and that of the losses in the conductor and substrate is
expected to have very little effect on the pulse distortion in
coplanar lines, extrapolating from the calculations made for the
microstrip line in our previous paper [3]. Pulse dispersion was
also calculated for different distances of propagation and 10-90
percent risetime plotted as a function of distance. Again good
agreement with experimental data supplied is obtained (Fig. 7).

IV. CONCLUSIONS

A computer program has been developed to. generate disper-
sion relations for coplanar-type transmission lines up to terahertz
frequencies for a wide range of configurations and dimensions.
The number of terms in the field expansions and the order of the
gaussian quadrature integration are specified in order to optimize
computing time. A simple approximate formula also has been
presented which can give dispersion relations for coplanar wave-

=23.68, a=513, b=~
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guides for a wide range of parameters. The results have been used
to predict distortion of picosecond electrical pulses propagating
in such lines. Good agreement has been obtained with available
experimental results on LiTaO, substrates.

Dispersion of coplanar waveguides has been compared to an
equivalent microstrip (same substrate thickness and characteristic
impedance) and is found to be more for subpicosecond pulses but
less for longer pulses. Finally, we note that dispersion in coplanar
lines can be greatly reduced by using a superstrate of the same
material, which would remove the inhomogeneity of the medium.
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Birefringence Analysis of Anisotropic Optical Fibers
Using Variational Reaction Theory

RUEY-BEEI WU anp CHUN HSIUNG CHEN

Abstract —The variational reaction theory is applied to achieve a varia-
tional equation for the study of the single-mode optical fibers with aniso-
tropic core media. Emphasized in this paper are the numerical resulis for
the birefringence of the two principal modes in discussing the effects due to
differences in refractive indices, anisotropy parameters, and index profiles.

I. INTRODUCTION

Optical fibers have found applications in various areas due to
the properties of low loss, high performance, electromagnetic
immunity, and small size. Recently, single-mode optical fibers
have received great attention because of small dispersion, but the
fundamental HE,;; modes in two orthogonal polarizations are
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