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and output impedances. The a and b coefficients are chosen to

achieve the maximum gain-bandwidth which sets a = 0.75 and

b = 0.32.

At this point, the choice of device g~ must be made. It must

be chosen with some care as it determines the number of devices

N, which also affects the parasitic resistances Rg and RJ~, Using

(3), we choose to set N = 8 and solve for g~ = 38 mmhos. From

Fig. 2, at (a, b) = (0.75,0.32), X = 0.74. Since we require f_ ~~~ =

20 GHz, this sets jC = 27 GHz. Based upon these values, the

remaining values are

Cg, = 0.23 pF

Rg = 4.7 Q

Cd, = 0.235 PF

R~, = 312 Q.

The transistor is now completely specified. The fact that Cg, and

Cd, are equaf results because the input and output line imped-

ances have been set equal to one another.

III. CONCLUSION

We have shown that the maximum normalized gain-bandwidth

curve in [1] is a small portion of the more general gain-bandwidth

contours. There is a“maximum which corresponds to the optimum

design of a distributed amplifier, Constraint-free design equa-

tions for transistors specifically intended for use in distributed

amplifiers were also presented.

I&FERENcEs

[1] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K.

Hohenwarter, “ MESFET-distributed amplifier design guidelines,” IEEE

Trans. Microwaves Theory Tech., MT1-32, pp. 268-275, Mar. 1984.

[2] R. C. Becker, “ Constraints in the design of GaAs MESFET MMIC-dis-

tributed amplifiers,” Ph.D. thesis, Univ. of Wisconsin, pp. 128-144, 1985,

Dispersion of Picosecond Pulses in Coplanar

Transmission Lines

G. HASNAIN, A. DIENES, AND J.R. WHINNERY

Abstract —The dispersion of coplanar-~ transmission lines has been

extended to the terahertz regime to examine the distortion of picosecond

electrical pulses. Dispersion of coplanar wavegnides is compared to equiv-

alent microstrip lines. Agreement with available experimental data is

demonstrated for coplanar strips, An approximate dispersion formula for

coplanar waveguides is also reported for CAD applications.

I. INTRODUCTION

Picosecond electrical pulses generated by opto-electronic

switches [1] have several hundred gigahertz bandwidth and are

therefore much dispersed within a few millimeters of travel, even

on high-frequency transmission lines such as microstrips and

coplanar waveguides. Dispersion characteristics have been in-
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Two examples of a coplanar-type transmission lines, (a) Coplanar

strips (CPS). (b) Coplanar waveguide (CPW).

vestigated thoroughly for the popular microstrip line [2], but

published data for coplanar lines are usually limited to about 50

GHz. In previous papers [3], [4], we examined the dispersion of

picosecond pulses in microstrip lines. In this paper, we extend the

dispersion relation of coplanar-type transmission lines into the

terahertz regime and use the result to compute distortion of

picosecond pulses propagating in such lines.

II. ~ORY

The spectral domain analysis method used here was first pro-

posed for slot lines by Itoh and Mittra [5] and later extended by

Knorr and Kuchler [6] to coupled slots and coplanar strips. For

the purpose of clarity, the main steps of the analysis are briefly

reiterated. T~ical coplanar transmission lines consist of two or

more metal strips separated by slots on a dielectric substrate (Fig.

1). The problem is to find the solution to the wave equation in an

inhomogeneous medium with inhomogeneous boundary condi-

tions. Since the metaf discontinuities lead to difficulties in de-

fining the boundary conditions in the transverse direction, the

scalar potentials rpe,h( x, y) are transformed into the Fourier

domain. Thus, the Hehnholtz wave equation is converted to an

ordinary differential equation whose solutions are given by:

%(~,y) =A(Lz)e-Y1(Y-d) (1)

CA(a,y) = B(a) sinh(y2y) +C(a)cosh(y2y) (2)

q3(a, y) =D(a)ey’y (3)

2 = a2 + /?2 – U2poCoC,, i = 1,2,3 define the regions, a iswhere yi

the transform variable corresponding to the x-variation, and /3 is

the propagation constant in the longitudinal direction. Using the

continuity conditions at y = O

EZ2 = EZ3 ; EXZ = EX3 ; HZ2 = H,j ; HX2 = HX3 (4)
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and the interface conditions at y = d

EZ2 = E,l = E=(a); EX2 =EX1= E,(a) (5)

H,2– H2*=.lx(a); Hx2– H.yl=.J2(a)

we eliminate the eight constants to obtain a set of coupled

equations

G1l(a, ~) EX(a)+G,I(a, B) fi, (a) ‘~.(a) (6)

G21(a, p) Ex(a)+G22(%B) ~z(cY)= J.(~) (7)

where G,, (a, ~) are the elements of the dyadic Green function in

the Fourier transform domain.

Expanding the electric-field components in an infinite series

using a complete set of basis functions

Ex(a) = ~ anqn(a) and El(a)= ~ bn{n(a) (8)
n=l n=l

and applying Galerkin’s method [7], we have

(9)

~=1 *=1

for m=l,2,3 . . . m, where

%.(B) =~mI%l(sI,B)%(~) TIn(cY)da (11)
–w

Q~. (P) ‘~mG2(a,D)it(~)L(~)~~ (12)
–m

R~.(B) =~m %l(a, p)(l(a)%(a) da (13)
–co

&n(B) =/m Gzz(a, p) f;(a) (.(a) da. (14)
—m

For nontrivial solutions of the electric fields, the determinant

of the coefficient matrix of (9) and (10) must vanish. The values

of /3, obtained from the determirtantaf equation for a given

frequency, define the desired dispersion relation.

The theory developed is exact but a practical solution cannot

be obtained from art infinite determinant. In practice, a priori

knowledge of the actual field distribution is used to approximate

the field expansion by only a few terms. However, the actuaf

numerical evaluation of the determinant becomes very com-

plicated beyond a certain frequency due to the appearance of

transversely propagating modes that are manifested in the spec-

tral domain as poles of the Green function (Fig. 2(a)). For-

tunately, the poles are simple and their effect on the accuracy of

the integration can be greatly reduced by integrating over subin-

tervals chosen symmetrically about the poles. The poles must first

be determined by numerically solving for the roots of the Green

function denominator. This becomes more difficult with increas-

ing frequency as the number of roots grows and their separation

rapidly decreases (Fig. 2(b)), In a realistic guide, the transverse

direction is usually bounded by conducting walls. This causes

standing waves and consequently the scalar potentials are then

expanded in a Fourier series. The poles of the Green function do

not, in general, coincide with the spectral harmonics, but the

sharp resonances still make the summations difficult to evaluate.

Also, while substrate and conductor losses limit the amplitude of

the resonances somewhat, this does not alleviate the difficulties in

the evaluation of the integrals. Nevertheless, by careful choice of

numerical algorithms, it has been possible to extract solutions up

to several terahertz frequencies for typical configurations. A good
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Fig. 2. (a) Green function component Gll ( a, j)) and its denominator (dashed

curve) versus ad for d/A = 0.12 (72 GHz for d = 500 pm) and /l/kO = 5.1.

Configuration: Coplanar strips with w/d = 0.1, s/d= 0.1, and c,= 43. (b)

Denominator of Gll(a, C) versus ad for d/A= 1.0 (600 GHz for d = 500

pm) and ~/kO = 6.0. Same configuration as Fig. 2(a).

choice for the basis functions in the spectraf domain are the

Bessel functions. With these functions, fairly accurate solutions

can be obtained from a 2 X 2 matrix-that is, using a one term

expansion. However, we have used up to four terms which

required the evaluation of 64 integrals (each of which may have

as many as 10 poles) for a given value of frequency. The numeri-

caf calculations involve considerable computing time even for the

one term expansion.

Finally, pulse distortion due to dispersion is computed from [4]

V(f, z) = V(f_, O)e-JB(f)2

where

(15)

(16)

and ~(~, z) is the Fourier transform of the pulse u (t, z ) at a

distance z.

III. RESULTS

Owing to the significant computing effort needed to obtain the

value of ~ at any given frequency, it was found expedient to use

the empirical formula (also used for tnicrostrip dispersion [81)

1——)

(17)

curve fitted to the dispersion data. F = f/f~~ is the normahzed

frequency, f~~ = 4~/d is the cut-off frequency for the

lowest order TE mode, c~ is the effective permittivity at the

quasi-static limit [2], and a, b are constants which depend on the

configuration and dimensions. This empirical formula appears to

fit quite well the dispersion relations for both coplanar waveguide

(CPW) and coplanar strip (CPS).
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Fig, 3. Propagation constant ~/,kO versus normalized frequency (~/~TE) for

a coplanar waveguide arrd a microstrip on a gallium arsenide substrate both

having 50-Q characteristic impedance (see text for dimensions).
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Fig. 4. Distorted shape of a Gaussian pulse after propagating equal distance

on the coplanar waveguide and microstrip line described in Fig. 3. (a) Initiaf

pulse full-width, half maximum FWHM = 0.5 ps; travel distance: 0.5 mm. (b)

Initml pulse FWHM = 2.0 ps; travel distance: 2.0 mm.

The constants a and b in the empirical formula for dispersion

was also computed for coplanar waveguides of varying dimen-

sions. We observed that b =1.8 independent of the dimensions,

while a is computed from

log(a) =r410g(s/w)+ v (18)

where u and v depend on the substrate thickness d as follows:

U = 0.54 –0.64q+0.015q2 (19)

V = 0.43 –0.86q+0.540q2 (20)

where q = log(.r/d).

We have thus obtained an approximate formula for desk

calculation of dispersion, which should prove useful in the com-

puter-aided-design (CAD) of microwave-integrated circuits in-

volving coplanar waveguides. The formula has been verified to be

accurate to within 5 percent for the following range of parameters

0.l<s/w<5; 0.l<s/d<5;

1.5< C,< 50; 0< f/fTE <10.

DISPERSION RELATION FOR CPS
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Fig. 5. Propagation constant ~/kO versus frequency for coplanar strips with

w=s=50~, d=500#, andc, =43.
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Fig. 6. (a) Experimentally measured pulse shape at 0.9 mm with fafling edge

extrapolated (dashed line) for computational purpose (Courtesy: K. Meyer,

University of Rochester, NY; see [9] for experimental setup). (b) Theoreti-

cally computed pulse shape at 4 mm using dispersion relation shown in Fig.

3. (c) Expenmentafly measured pulse shape at 4 mm (Courtesy: K. Meyer,

University of Rochester, NY).

Outside the above range the formula may still be valid, but its

validity has not been tested due to computational limitations.

Gallium arsenide is one of the semiconductors often used for

optoelectronic switches. We therefore analyzed the dispersion of

the typical 50-ohm coplantu’ waveguide (50-IJ slot, 85-w strip) on

a 100-p thick GaAs substrate having c, =13. The dispersion

relation is shown in Fig. 3 in comparison with that of a 50-fl

rnicrostrip (73-P, strip) on the same substrate [3]. We observe that

the quasi-state value of the effective permittivity c~ is lower for

the coplanar line compared to the microstrip. This is to be

expected since the coplanar line has greater fringe fields. At

infinite frequencies the effective perrnittivity Ccff approaches e, in
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Fig. 7. Rise time of distorted pulse ss a function of propagation distance.

Theoretical vafues are compared against those experimentally measured

(Courtesy: K. Meyer, University of Rochester, NY).

both cases. This implies that ultrashort pulses (having band-

widths greater than 700 GHz for this case) will suffer greater

dispersion in the coplanar line. On the other hand, since the

increase of ~eff with frequency begins more gradually for coplanar

lines, longer pulses with narrow bandwidth experience less varia-

tion of Ceff and hence less distortion. This difference of behavior

is illustrated in Fig. 4. The dispersion of both coplanar and

microstriD lines car-be reduced by reducing the substrate thick-

ness. Fo~ coplanar lines, dispersi& can als~ be slightly reduced

by decreasing the strip and slot dimensions, but the C=ff at low

frequency remains lower then the corresponding microstrip and

thus it is intrinsically more dispersive for short pulses.

The only experimental measurement of dispersion in coplanar

transmission lines, to our knowledge, has been made at the

University of Rochester [9], [10] on lithium tantalate substrates

using an electrooptic sampling technique. Consequently, calcula-

tions were made for their experimental configuration which

utilizes two coplanar strips each 50 p wide and separated by 50 p

on a 500-p thick LiTa03 substrate having c, = 43. The numeri-

c~ly derived dispersion curve is shown in Fig. 5. For this case,

the constants in curve-fitting (17) are c,= 23.68, a = 51.3, b =

1.69, and ~TE = 23.15 GHz. Using their experimentally measured

pulse shape at 0.9 mm (Fig. 6(a)) with the falling edge extrapo-

lated (the data supplied was truncated), the pulse shape at 4 mm

was computed (Fig 6(b)) from the dispersion relation. The agree-

ment with the experimental result (Fig. 6(c)) is found to be

reasonable. The frequency dependence of the characteristic im-

pedence and that of the losses in the conductor and substrate is

expected to have very little effect on the pulse distortion in

coplanar lines, extrapolating from the crdculations made for the

microstrip line in our previous paper [3]. Pulse dispersion was

also calculated for different distances of propagation and 10-90

percent risetime plotted as a function of distance. Again good

agreement with experimental data supplied is obtained (Fig. 7).

W, CONCLUSIONS

A computer program has been developed to generate disper-

sion relations for coplanar-type transrnission lines up to terahertz

frequencies for a wide range of configurations and dimensions.

The number of terms in the field expansions and the order of the

gaussian quadrature integration are specified in order to optimize

computing time. A simple approximate formula also has been

presented which can give dispersion relations for coplanar wave-

guides for a wide range of parameters. The results have been used

to predict distortion of picosecond electrical pulses propagating

in such lines. Good agreement has been obtained with available

experimental results on LiTa03 substrates.

Dispersion of coplanar waveguides has been compared to an

equivalent microstrip (same substrate thickness and characteristic

impedance) and is found to be more for subpicosecond pulses but

less for longer pulses. Finally, we note that dispersion in coplanar

lines can be greatly reduced by using a superstrata of the same

material, which would remove the inhomogeneity of the mecliurn.

ACKNOWLEDGMENT

The authors wish to thank K. Meyer and Prof. G. Mourou for

sharing their experimental results, and Profs. T. Itoh and C.

Schwartz for helpful discussions.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

C. H. Lee, Picosecond Optoelectroiuc Deuces.. New York: Academic

Press, 1984.

K. C. Gupta, R. Garg, and I. J. Bahl, A4icrostrip Lines and Slotlmes.

New York: Artech House, 1979.

G. Haanain, G. Arjavalingarn, A. Dienes, and J. R. Whinnery, “ Disper-

sion of picosecond pulses on rnicrostrip transmission lines,” SPIE Proc.

vol. 439, pp. 159-163, Aug. 1983.

K. K. Li, G. Arjavalingrnn, A. Dienes, and J. R. Whinnery, ” Propagation

of picosecond pulses on microwave striplinesy IEEE Trans. Microwave

Theoy Tech., vol. MTP30, pp. 1270-1273, 1982.

T. Itoh, and R. Mittra, ” Dispersion characteristics of slot lines,” Elecmon

LtVt., VO1. 7, pp. 364-365, kdy 1971.

J. B. Knorr snd K. D. Kucider, “Analyais of coupled slots and eoplsnsr

strips on dielectric substrate,” IEEE Trans. Microwave Theory Tech., vol.

MTT-23, pp. 541-54S, July 1975,

D. S. Jones, The Theory of Electromagnetism. New York: Pergamon,

1964.

E. Yarnsahita, K. Atstdd, and T. Ueda, “An approximate dispersion

formula of rnicrostrip lines for computer sided design of nricrowave-in-

tegrated cirmrits~ IEEE Trans. Microwave Theory Tech., vol. MIT-27,

pp. 1036-1038, 1979.

G. Mourou and K. E. Meyer, “Subpicosecond electrooptic sampling

uamg coplanar strip transmission lines,” Appl. Phys. Lett. vol. 45, no. 5,

pp. 492–494, Sept. 1984.
K. E. Meyer snd G. Mourou, private commtication.

Birefringence Analysis of Anisotropic Optical Fibers

Using Variational Reaction Theory

RUEY-BEEI WU AND CHUN HSIUNG CHEN

,@tract —Tfte variational reaction theory is appfied to achieve a vssria-

tionaf equation for the study of the siugle-mode optical fibers with msiso-

tropic core media. Emphasized in this paper are the numericaf resulls for

the birefrbtgence of the two principal modes in discussing the effects due to

differences in refractive indices, anisotropy paramete~ and index profiles.

I. INTRODUCTION

Optical fibers have found applications in various areas due to

the properties of low loss,, high performance, electromagnetic

immunity, and small size. Recently, single-mode optical fibers

have received great attention because of small dispersion, but the

fundamental HE1l modes in two orthogonal polarizations are
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